- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Spriano, Davide (2)
-
Abbott, Carolyn R (1)
-
Gupta, Radhika (1)
-
Hagen, Mark (1)
-
Ng, Thomas (1)
-
Petyt, Harry (1)
-
Russell, Jacob (1)
-
Sisto, Alessandro (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Behrstock, Hagen and Sisto classified 3-manifold groups admitting a hierarchically hyperbolic space structure. However, these structures were not always equivariant with respect to the group. In this paper, we classify 3-manifold groups admitting equivariant hierarchically hyperbolic structures. The key component of our proof is that the admissible groups introduced by Croke and Kleiner always admit equivariant hierarchically hyperbolic structures. For non-geometric graph manifolds, this is contrary to a conjecture of Behrstock, Hagen and Sisto and also contrasts with results about CAT(0) cubical structures on these groups. Perhaps surprisingly, our arguments involve the construction of suitable quasimorphisms on the Seifert pieces, in order to construct actions on quasi-lines.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abbott, Carolyn R; Ng, Thomas; Spriano, Davide; Gupta, Radhika; Petyt, Harry (, Mathematische Zeitschrift)
An official website of the United States government
